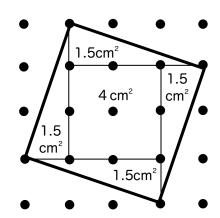

本巣市 算数・数学甲子園 2017 解答例

小学生問題


1

72cm²

正六角形の向かい合う頂点をそれぞれむ すぶと長方形の中に三角形が8つでき る。その8つの三角形は全て合同なので、 三角形の1つ分は、 $48\div8=6$ 正六角形は、長方形の中の三角形 12 こ分 なので、 $6\times12=72$

2

3

283 番目

●●○○●○で1セットである。

6 この石の中に3 この黒石があるので 142÷3 = 47 あまり 1 47 セット+1 番目の黒石が 142 番目の石になる。 47×6 = 282 282+1=283

4

(1)

あなたの言った数				ビンゴ	ヒット	分かること
1	2	7	0	0	4 相手の数字は、1,2,7,0の4つの数字だ。	
7	1	0	2	0	4 7102の順で、位のあたっている数はない。	
0	\circ	\circ	\circ	4	0	下の解説

千の位に0は入らないから、千の位は2しかない。同じように、0は一の位でも十の位でもないから、百の位しかない。7は、十の位ではないから、一の位になる。残った1が十の位になる。

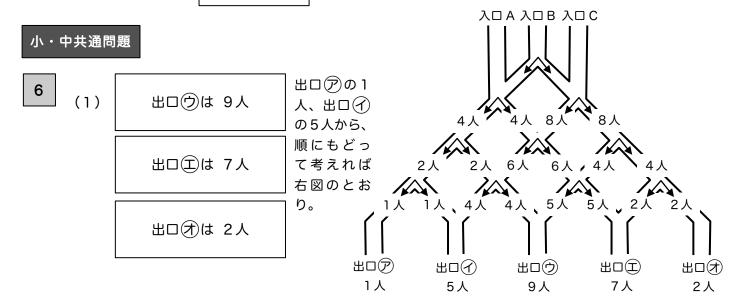
(2)

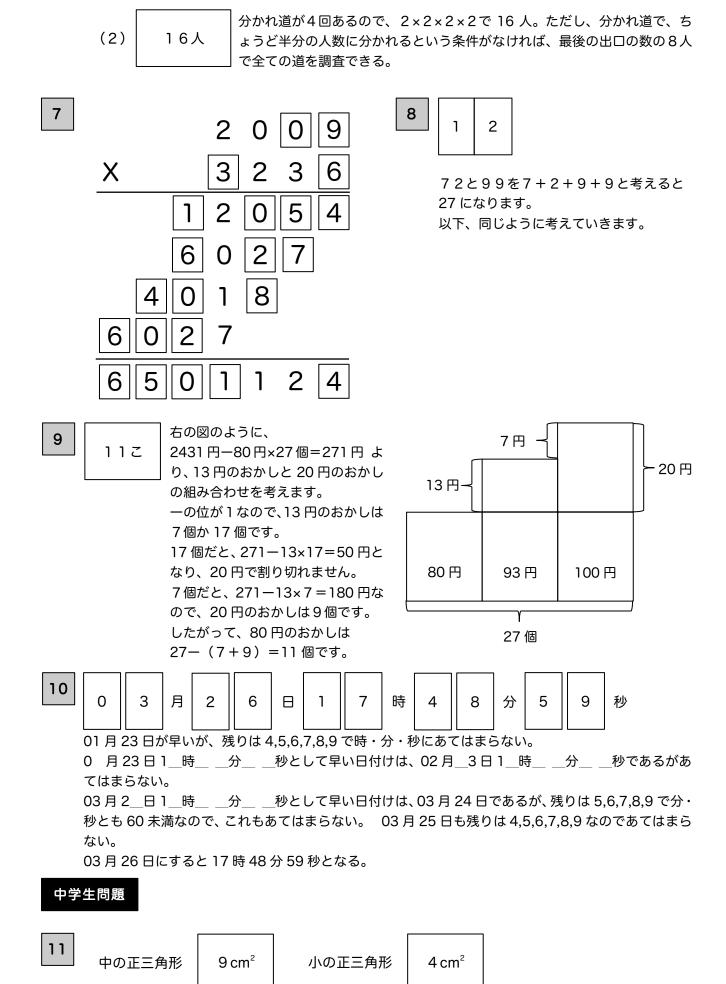
3	

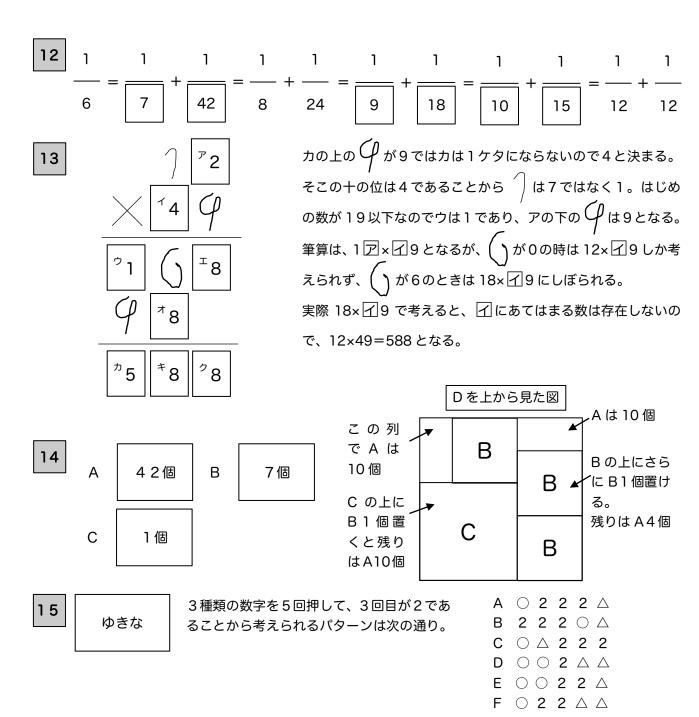
9

2

	あなか	この言	言った	た数	ビンゴ	ヒット	分かること
$\overline{\mathcal{P}}$	1	2	3	4	0	3	相手の数には、1,2,3,4のうちの3つの数字が入っている。
4	5	6	7	8	0	0	相手の数には、5,6,7,8の数字はない。ということは、残りの一つは9,0のどちらかだ。
(5	9	7	8	1	0	百の位の数字だけ変えたら、1 ビンゴしているから、百の位の数字は 9 だ。 0 は使われていない。
	4	9	1	2	3	0	9は百の位に決定しているから、相手の数には、 4,1,2のうち数字が2つ入っている。ここでア と比べると、相手の数には3がある。
7	4	9	1	3	2	1	9と3は分かっているから、相手の数字は4,1 の中に一つある。ここで⑦と比べると、相手の 数には2がある
\bigcirc	0	0	0	0	4	0	下の解説


5 (1) 10時10分


A 君が試合をしていた時間は A 対 B, A 対 C の 2 試合で 50 分間 B 君が試合をしていた時間は A 対 B, B 対 C の 2 試合で 42 分間 C 君が試合をしていた時間は A 対 C, B 対 C の 2 試合で 48 分間 合計 50+42+48=140 分間


同じ試合にかかった時間を2回ずつ合計したことになるので、試合時間は140÷2=70分間 午前9時の70分後は午前10時10分である。

(2) 第1試合 22分間 第2試合 28分間 20分間

(1) より、3つの試合にかかった時間は70分間。このうち、C 君が試合をしていたのは第2試合と第3試合で、その合計が48分間だから、C 君が出場していない第1試合は70-48=22だから22分間である。同じように、第2試合はB君の試合時間が42分間だから70-42=28だから28分間、第3試合はA君の試合時間が50分間だから70-50=20だから20分間である。

A~C の \bigcirc と \triangle の和は、25-6=19になるが、たして 19になるような \bigcirc と \triangle はない D の \bigcirc ○と \triangle △の和は偶数になるが、25-2=23よりあてはまらない。E,F のような \bigcirc ○と \triangle の和は 25-4=21 で、考えられるパターンは、669,777,885,993 だが、9は押さなくて、3種類の数字な ので 885 と 588 があてはまる。1回目に押した数字は5回目に押した数字よりも大きいので 885 が あてはまる。よって 8 8 2 2 5 は「ゆきな」

チャレンジ問題

11

分数の計算としてみると、

 $1 \times 2 \times 3 \times \cdots \times \square = 6 \times 7 \times \cdots \times 15 \div 273$ ですが、 $273 = 3 \times 91 = 3 \times 7 \times 13$ なので、

 $1 \times 2 \times 3 \times \cdot \cdot \cdot \times \square = 6 \times 7 \times \cdot \cdot \cdot \times 13 \times 14 \times 15 \div (3 \times 7 \times 13)$

 $=6\times7\times8\times9\times10\times11\times12\times2\times5$

 $=2\times5\times6\times7\times8\times9\times10\times11\times12$

 $12 = 3 \times 4$ なので $= 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10 \times 11$

このことから、□=11とわかります。